Factored Value Iteration Converges

نویسندگان

  • István Szita
  • András Lörincz
چکیده

In this paper we propose a novel algorithm, factored value iteration (FVI), for the approximate solution of factored Markov decision processes (fMDPs). The traditional approximate value iteration algorithm is modified in two ways. For one, the least-squares projection operator is modified so that it does not increase max-norm, and thus preserves convergence. The other modification is that we uniformly sample polynomially many samples from the (exponentially large) state space. This way, the complexity of our algorithm becomes polynomial in the size of the fMDP description length. We prove that the algorithm is convergent. We also derive an upper bound on the difference between our approximate solution and the optimal one, and also on the error introduced by sampling. We analyse various projection operators with respect to their computation complexity and their convergence when combined with approximate value iteration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimistic Initialization and Greediness Lead to Polynomial Time Learning in Factored MDPs - Extended Version

In this paper we propose an algorithm for polynomial-time reinforcement learning in factored Markov decision processes (FMDPs). The factored optimistic initial model (FOIM) algorithm, maintains an empirical model of the FMDP in a conventional way, and always follows a greedy policy with respect to its model. The only trick of the algorithm is that the model is initialized optimistically. We pro...

متن کامل

Policy Iteration for Factored MDPs

Many large MDPs can be represented compactly using a dynamic Bayesian network. Although the structure of the value function does not re­ tain the structure of the process, recent work has suggested that value functions in factored MDPs can often be approximated well using a factored value function: a linear combination of restr icted basis functions, each of which refers only to a small subset ...

متن کامل

Iteration for Factored MDPsDaphne

Many large MDPs can be represented compactly using a dynamic Bayesian network. Although the structure of the value function does not retain the structure of the process, recent work has suggested that value functions in factored MDPs can often be approximated well using a factored value function: a linear combination of restricted basis functions, each of which refers only to a small subset of ...

متن کامل

Symbolic Opportunistic Policy Iteration for Factored-Action MDPs

This paper addresses the scalability of symbolic planning under uncertainty with factored states and actions. Our first contribution is a symbolic implementation of Modified Policy Iteration (MPI) for factored actions that views policy evaluation as policy-constrained value iteration (VI). Unfortunately, a naı̈ve approach to enforce policy constraints can lead to large memory requirements, somet...

متن کامل

Model-based Bayesian Reinforcement Learning in Partially Observable Domains

Bayesian reinforcement learning in partially observable domains is notoriously difficult, in part due to the unknown form of the beliefs and the optimal value function. We show that beliefs represented by mixtures of products of Dirichlet distributions are closed under belief updates for factored domains. Belief monitoring algorithms that use this mixture representation are proposed. We also sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta Cybern.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008